// vim:ts=8:expandtab #include <ctype.h> #include <time.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <yajl/yajl_gen.h> #include <yajl/yajl_version.h> #include "i3status.h" #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #include <sys/types.h> #include <sys/sysctl.h> #endif #if defined(__OpenBSD__) #include <sys/types.h> #include <sys/ioctl.h> #include <sys/fcntl.h> #include <machine/apmvar.h> #endif #if defined(__NetBSD__) #include <fcntl.h> #include <prop/proplib.h> #include <sys/envsys.h> #endif #define BATT_STATUS_NAME(status) \ (status == CS_CHARGING ? "CHR" : \ (status == CS_DISCHARGING ? "BAT" : "FULL")) /* * Get battery information from /sys. Note that it uses the design capacity to * calculate the percentage, not the last full capacity, so you can see how * worn off your battery is. * */ void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, int low_threshold, char *threshold_type, bool last_full_capacity, bool integer_battery_capacity, bool hide_seconds) { time_t empty_time; struct tm *empty_tm; char buf[1024]; char statusbuf[16]; char percentagebuf[16]; char remainingbuf[256]; char emptytimebuf[256]; char consumptionbuf[256]; const char *walk, *last; char *outwalk = buffer; bool watt_as_unit; bool colorful_output = false; int full_design = -1, remaining = -1, present_rate = -1, voltage = -1; charging_status_t status = CS_DISCHARGING; memset(statusbuf, '\0', sizeof(statusbuf)); memset(percentagebuf, '\0', sizeof(percentagebuf)); memset(remainingbuf, '\0', sizeof(remainingbuf)); memset(emptytimebuf, '\0', sizeof(emptytimebuf)); memset(consumptionbuf, '\0', sizeof(consumptionbuf)); static char batpath[512]; sprintf(batpath, path, number); INSTANCE(batpath); #if defined(LINUX) if (!slurp(batpath, buf, sizeof(buf))) { OUTPUT_FULL_TEXT(format_down); return; } for (walk = buf, last = buf; (walk-buf) < 1024; walk++) { if (*walk == '\n') { last = walk+1; continue; } if (*walk != '=') continue; if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW")) { watt_as_unit = true; remaining = atoi(walk+1); } else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW")) { watt_as_unit = false; remaining = atoi(walk+1); } else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW")) present_rate = abs(atoi(walk+1)); else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW")) voltage = abs(atoi(walk+1)); /* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually * it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as * unit instead of μAh. We will calculate it as we need it * later. */ else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW")) present_rate = abs(atoi(walk+1)); else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging")) status = CS_CHARGING; else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full")) status = CS_FULL; else { /* The only thing left is the full capacity */ if (last_full_capacity) { if (!BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL") && !BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL")) continue; } else { if (!BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN") && !BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN")) continue; } full_design = atoi(walk+1); } } /* the difference between POWER_SUPPLY_ENERGY_NOW and * POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is * given in mWh, the charge in mAh. So calculate every value given in * ampere to watt */ if (!watt_as_unit) { present_rate = (((float)voltage / 1000.0) * ((float)present_rate / 1000.0)); remaining = (((float)voltage / 1000.0) * ((float)remaining / 1000.0)); full_design = (((float)voltage / 1000.0) * ((float)full_design / 1000.0)); } if ((full_design == -1) || (remaining == -1)) { OUTPUT_FULL_TEXT(format_down); return; } (void)snprintf(statusbuf, sizeof(statusbuf), "%s", BATT_STATUS_NAME(status)); float percentage_remaining = (((float)remaining / (float)full_design) * 100); if (integer_battery_capacity) { (void)snprintf(percentagebuf, sizeof(percentagebuf), "%.00f%%", percentage_remaining); } else { (void)snprintf(percentagebuf, sizeof(percentagebuf), "%.02f%%", percentage_remaining); } if (present_rate > 0) { float remaining_time; int seconds, hours, minutes, seconds_remaining; if (status == CS_CHARGING) remaining_time = ((float)full_design - (float)remaining) / (float)present_rate; else if (status == CS_DISCHARGING) remaining_time = ((float)remaining / (float)present_rate); else remaining_time = 0; seconds_remaining = (int)(remaining_time * 3600.0); hours = seconds_remaining / 3600; seconds = seconds_remaining - (hours * 3600); minutes = seconds / 60; seconds -= (minutes * 60); if (status == CS_DISCHARGING && low_threshold > 0) { if (strcasecmp(threshold_type, "percentage") == 0 && percentage_remaining < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } else if (strcasecmp(threshold_type, "time") == 0 && seconds_remaining < 60 * low_threshold) { START_COLOR("color_bad"); colorful_output = true; } else { colorful_output = false; } } if (hide_seconds) (void)snprintf(remainingbuf, sizeof(remainingbuf), "%02d:%02d", max(hours, 0), max(minutes, 0)); else (void)snprintf(remainingbuf, sizeof(remainingbuf), "%02d:%02d:%02d", max(hours, 0), max(minutes, 0), max(seconds, 0)); empty_time = time(NULL); empty_time += seconds_remaining; empty_tm = localtime(&empty_time); if (hide_seconds) (void)snprintf(emptytimebuf, sizeof(emptytimebuf), "%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0)); else (void)snprintf(emptytimebuf, sizeof(emptytimebuf), "%02d:%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0)); (void)snprintf(consumptionbuf, sizeof(consumptionbuf), "%1.2fW", ((float)present_rate / 1000.0 / 1000.0)); } else { /* On some systems, present_rate may not exist. Still, make sure * we colorize the output if threshold_type is set to percentage * (since we don't have any information on remaining time). */ if (status == CS_DISCHARGING && low_threshold > 0) { if (strcasecmp(threshold_type, "percentage") == 0 && percentage_remaining < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } } #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) int state; int sysctl_rslt; size_t sysctl_size = sizeof(sysctl_rslt); if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) { OUTPUT_FULL_TEXT(format_down); return; } present_rate = sysctl_rslt; if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) { OUTPUT_FULL_TEXT(format_down); return; } remaining = sysctl_rslt; if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL,0) != 0) { OUTPUT_FULL_TEXT(format_down); return; } state = sysctl_rslt; if (state == 0 && present_rate == 100) status = CS_FULL; else if (state == 0 && present_rate < 100) status = CS_CHARGING; else status = CS_DISCHARGING; full_design = sysctl_rslt; (void)snprintf(statusbuf, sizeof(statusbuf), "%s", BATT_STATUS_NAME(status)); (void)snprintf(percentagebuf, sizeof(percentagebuf), "%02d%%", present_rate); if (state == 1) { int hours, minutes; minutes = remaining; hours = minutes / 60; minutes -= (hours * 60); (void)snprintf(remainingbuf, sizeof(remainingbuf), "%02dh%02d", max(hours, 0), max(minutes, 0)); if (strcasecmp(threshold_type, "percentage") == 0 && present_rate < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } else if (strcasecmp(threshold_type, "time") == 0 && remaining < (u_int) low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } #elif defined(__OpenBSD__) /* * We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and * the generic interface on macppc/sparc64/zaurus, instead of using sysctl(3) and * probing acpi(4) devices. */ struct apm_power_info apm_info; int apm_fd; apm_fd = open("/dev/apm", O_RDONLY); if (apm_fd < 0) { OUTPUT_FULL_TEXT("can't open /dev/apm"); return; } if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0) OUTPUT_FULL_TEXT("can't read power info"); close(apm_fd); /* Don't bother to go further if there's no battery present. */ if ((apm_info.battery_state == APM_BATTERY_ABSENT) || (apm_info.battery_state == APM_BATT_UNKNOWN)) { OUTPUT_FULL_TEXT(format_down); return; } switch(apm_info.ac_state) { case APM_AC_OFF: status = CS_DISCHARGING; break; case APM_AC_ON: status = CS_CHARGING; break; default: /* If we don't know what's going on, just assume we're discharging. */ status = CS_DISCHARGING; break; } (void)snprintf(statusbuf, sizeof(statusbuf), "%s", BATT_STATUS_NAME(status)); /* integer_battery_capacity is implied as battery_life is already in whole numbers. */ (void)snprintf(percentagebuf, sizeof(percentagebuf), "%.00d%%", apm_info.battery_life); if (status == CS_DISCHARGING && low_threshold > 0) { if (strcasecmp(threshold_type, "percentage") == 0 && apm_info.battery_life < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } else if (strcasecmp(threshold_type, "time") == 0 && apm_info.minutes_left < (u_int) low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } /* Can't give a meaningful value for remaining minutes if we're charging. */ if (status != CS_CHARGING) { (void)snprintf(remainingbuf, sizeof(remainingbuf), "%d", apm_info.minutes_left); } else { (void)snprintf(remainingbuf, sizeof(remainingbuf), "%s", "(CHR)"); } if (colorful_output) END_COLOR; #elif defined(__NetBSD__) /* * Using envsys(4) via sysmon(4). */ int fd, rval, last_full_cap; bool is_found = false; char *sensor_desc; bool is_full = false; prop_dictionary_t dict; prop_array_t array; prop_object_iterator_t iter; prop_object_iterator_t iter2; prop_object_t obj, obj2, obj3, obj4, obj5; asprintf(&sensor_desc, "acpibat%d", number); fd = open("/dev/sysmon", O_RDONLY); if (fd < 0) { OUTPUT_FULL_TEXT("can't open /dev/sysmon"); return; } rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict); if (rval == -1) { close(fd); return; } if (prop_dictionary_count(dict) == 0) { prop_object_release(dict); close(fd); return; } iter = prop_dictionary_iterator(dict); if (iter == NULL) { prop_object_release(dict); close(fd); } /* iterate over the dictionary returned by the kernel */ while ((obj = prop_object_iterator_next(iter)) != NULL) { /* skip this dict if it's not what we're looking for */ if ((strlen(prop_dictionary_keysym_cstring_nocopy(obj)) == strlen(sensor_desc)) && (strncmp(sensor_desc, prop_dictionary_keysym_cstring_nocopy(obj), strlen(sensor_desc)) != 0)) continue; is_found = true; array = prop_dictionary_get_keysym(dict, obj); if (prop_object_type(array) != PROP_TYPE_ARRAY) { prop_object_iterator_release(iter); prop_object_release(dict); close(fd); return; } iter2 = prop_array_iterator(array); if (!iter2) { prop_object_iterator_release(iter); prop_object_release(dict); close(fd); return; } /* iterate over array of dicts specific to target battery */ while ((obj2 = prop_object_iterator_next(iter2)) != NULL) { obj3 = prop_dictionary_get(obj2, "description"); if (obj3 && strlen(prop_string_cstring_nocopy(obj3)) == 8 && strncmp("charging", prop_string_cstring_nocopy(obj3), 8) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); if (prop_number_integer_value(obj3)) status = CS_CHARGING; else status = CS_DISCHARGING; continue; } if (obj3 && strlen(prop_string_cstring_nocopy(obj3)) == 6 && strncmp("charge", prop_string_cstring_nocopy(obj3), 6) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); obj4 = prop_dictionary_get(obj2, "max-value"); obj5 = prop_dictionary_get(obj2, "type"); remaining = prop_number_integer_value(obj3); full_design = prop_number_integer_value(obj4); if (remaining == full_design) is_full = true; if (strncmp("Ampere hour", prop_string_cstring_nocopy(obj5), 11) == 0) watt_as_unit = false; else watt_as_unit = true; continue; } if (obj3 && strlen(prop_string_cstring_nocopy(obj3)) == 14 && strncmp("discharge rate", prop_string_cstring_nocopy(obj3), 14) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); present_rate = prop_number_integer_value(obj3); continue; } if (obj3 && strlen(prop_string_cstring_nocopy(obj3)) == 13 && strncmp("last full cap", prop_string_cstring_nocopy(obj3), 13) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); last_full_cap = prop_number_integer_value(obj3); continue; } if (obj3 && strlen(prop_string_cstring_nocopy(obj3)) == 7 && strncmp("voltage", prop_string_cstring_nocopy(obj3), 7) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); voltage = prop_number_integer_value(obj3); continue; } } prop_object_iterator_release(iter2); } prop_object_iterator_release(iter); prop_object_release(dict); close(fd); if (! is_found) { OUTPUT_FULL_TEXT(format_down); return; } if (last_full_capacity) full_design = last_full_cap; if (! watt_as_unit) { present_rate = (((float)voltage / 1000.0) * ((float)present_rate / 1000.0)); remaining = (((float)voltage / 1000.0) * ((float)remaining / 1000.0)); full_design = (((float)voltage / 1000.0) * ((float)full_design / 1000.0)); } float percentage_remaining = (((float)remaining / (float)full_design) * 100); if (integer_battery_capacity) (void)snprintf(percentagebuf, sizeof(percentagebuf), "%d%%", (int) percentage_remaining); else (void)snprintf(percentagebuf, sizeof(percentagebuf), "%.02f%%", percentage_remaining); /* * Handle percentage low_threshold here, and time low_threshold when * we have it. */ if (status == CS_DISCHARGING && low_threshold > 0) { if (strcasecmp(threshold_type, "percentage") == 0 && (((float)remaining / (float)full_design) * 100) < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } if (is_full) (void)snprintf(statusbuf, sizeof(statusbuf), "%s", BATT_STATUS_NAME(CS_FULL)); else (void)snprintf(statusbuf, sizeof(statusbuf), "%s", BATT_STATUS_NAME(status)); /* * The envsys(4) ACPI routines do not appear to provide a 'time * remaining' figure, so we must deduce it. */ float remaining_time; int seconds, hours, minutes, seconds_remaining; if (status == CS_CHARGING) remaining_time = ((float)full_design - (float)remaining) / (float)present_rate; else if (status == CS_DISCHARGING) remaining_time = ((float)remaining / (float)present_rate); else remaining_time = 0; seconds_remaining = (int)(remaining_time * 3600.0); hours = seconds_remaining / 3600; seconds = seconds_remaining - (hours * 3600); minutes = seconds / 60; seconds -= (minutes * 60); if (status != CS_CHARGING) { if (hide_seconds) (void)snprintf(remainingbuf, sizeof(remainingbuf), "%02d:%02d", max(hours, 0), max(minutes, 0)); else (void)snprintf(remainingbuf, sizeof(remainingbuf), "%02d:%02d:%02d", max(hours, 0), max(minutes, 0), max(seconds, 0)); if (low_threshold > 0) { if (strcasecmp(threshold_type, "time") == 0 && ((float) seconds_remaining / 60.0) < (u_int) low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } } else { if (hide_seconds) (void)snprintf(remainingbuf, sizeof(remainingbuf), "(%02d:%02d until full)", max(hours, 0), max(minutes, 0)); else (void)snprintf(remainingbuf, sizeof(remainingbuf), "(%02d:%02d:%02d until full)", max(hours, 0), max(minutes, 0), max(seconds, 0)); } empty_time = time(NULL); empty_time += seconds_remaining; empty_tm = localtime(&empty_time); /* No need to show empty time if battery is charging */ if (status != CS_CHARGING) { if (hide_seconds) (void)snprintf(emptytimebuf, sizeof(emptytimebuf), "%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0)); else (void)snprintf(emptytimebuf, sizeof(emptytimebuf), "%02d:%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0)); } (void)snprintf(consumptionbuf, sizeof(consumptionbuf), "%1.2fW", ((float)present_rate / 1000.0 / 1000.0)); #endif #define EAT_SPACE_FROM_OUTPUT_IF_EMPTY(_buf) \ do { \ if (strlen(_buf) == 0) { \ if (outwalk > buffer && isspace(outwalk[-1])) \ outwalk--; \ else if (isspace(*(walk+1))) \ walk++; \ } \ } while (0) for (walk = format; *walk != '\0'; walk++) { if (*walk != '%') { *(outwalk++) = *walk; continue; } if (BEGINS_WITH(walk+1, "status")) { outwalk += sprintf(outwalk, "%s", statusbuf); walk += strlen("status"); } else if (BEGINS_WITH(walk+1, "percentage")) { outwalk += sprintf(outwalk, "%s", percentagebuf); walk += strlen("percentage"); } else if (BEGINS_WITH(walk+1, "remaining")) { outwalk += sprintf(outwalk, "%s", remainingbuf); walk += strlen("remaining"); EAT_SPACE_FROM_OUTPUT_IF_EMPTY(remainingbuf); } else if (BEGINS_WITH(walk+1, "emptytime")) { outwalk += sprintf(outwalk, "%s", emptytimebuf); walk += strlen("emptytime"); EAT_SPACE_FROM_OUTPUT_IF_EMPTY(emptytimebuf); } else if (BEGINS_WITH(walk+1, "consumption")) { outwalk += sprintf(outwalk, "%s", consumptionbuf); walk += strlen("consumption"); EAT_SPACE_FROM_OUTPUT_IF_EMPTY(consumptionbuf); } } if (colorful_output) END_COLOR; OUTPUT_FULL_TEXT(buffer); }