// vim:ts=4:sw=4:expandtab #include #include #include #include #include #include #include #include #include "i3status.h" #if defined(__linux__) #include #include #include #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #include #include #include #endif #if defined(__DragonFly__) #include #endif #if defined(__OpenBSD__) #include #include #include #include #include #include #endif #if defined(__NetBSD__) #include #include #include #endif typedef enum { CS_UNKNOWN, CS_DISCHARGING, CS_CHARGING, CS_FULL, } charging_status_t; /* A description of the state of one or more batteries. */ struct battery_info { /* measured properties */ int full_design; /* in uAh */ int full_last; /* in uAh */ int remaining; /* in uAh */ int present_rate; /* in uA, always non-negative */ /* derived properties */ int seconds_remaining; float percentage_remaining; charging_status_t status; }; #if defined(__DragonFly__) #define ACPIDEV "/dev/acpi" static int acpifd; static bool acpi_init(void) { if (acpifd == 0) { acpifd = open(ACPIDEV, O_RDWR); if (acpifd == -1) acpifd = open(ACPIDEV, O_RDONLY); if (acpifd == -1) return false; } return true; } #endif #if defined(__linux__) || defined(__NetBSD__) /* * Add batt_info data to acc. */ static void add_battery_info(struct battery_info *acc, const struct battery_info *batt_info) { if (acc->remaining < 0) { /* initialize accumulator so we can add to it */ acc->full_design = 0; acc->full_last = 0; acc->remaining = 0; acc->present_rate = 0; } acc->full_design += batt_info->full_design; acc->full_last += batt_info->full_last; acc->remaining += batt_info->remaining; /* make present_rate negative for discharging and positive for charging */ int present_rate = (acc->status == CS_DISCHARGING ? -1 : 1) * acc->present_rate; present_rate += (batt_info->status == CS_DISCHARGING ? -1 : 1) * batt_info->present_rate; /* merge status */ switch (acc->status) { case CS_UNKNOWN: acc->status = batt_info->status; break; case CS_DISCHARGING: if (present_rate > 0) acc->status = CS_CHARGING; /* else if batt_info is DISCHARGING: no conflict * else if batt_info is CHARGING: present_rate should indicate that * else if batt_info is FULL: but something else is discharging */ break; case CS_CHARGING: if (present_rate < 0) acc->status = CS_DISCHARGING; /* else if batt_info is DISCHARGING: present_rate should indicate that * else if batt_info is CHARGING: no conflict * else if batt_info is FULL: but something else is charging */ break; case CS_FULL: if (batt_info->status != CS_UNKNOWN) acc->status = batt_info->status; /* else: retain FULL, since it is more specific than UNKNOWN */ break; } acc->present_rate = abs(present_rate); } #endif static bool slurp_battery_info(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, int number, const char *path, const char *format_down) { char *outwalk = buffer; #if defined(__linux__) char buf[1024]; const char *walk, *last; bool watt_as_unit = false; int voltage = -1; char batpath[512]; sprintf(batpath, path, number); INSTANCE(batpath); if (!slurp(batpath, buf, sizeof(buf))) { OUTPUT_FULL_TEXT(format_down); return false; } for (walk = buf, last = buf; (walk - buf) < 1024; walk++) { if (*walk == '\n') { last = walk + 1; continue; } if (*walk != '=') continue; if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW=")) { watt_as_unit = true; batt_info->remaining = atoi(walk + 1); batt_info->percentage_remaining = -1; } else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW=")) { watt_as_unit = false; batt_info->remaining = atoi(walk + 1); batt_info->percentage_remaining = -1; } else if (BEGINS_WITH(last, "POWER_SUPPLY_CAPACITY=") && batt_info->remaining == -1) { batt_info->percentage_remaining = atoi(walk + 1); } else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW=")) batt_info->present_rate = abs(atoi(walk + 1)); else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW=")) voltage = abs(atoi(walk + 1)); /* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually * it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as * unit instead of μAh. We will calculate it as we need it * later. */ else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW=")) batt_info->present_rate = abs(atoi(walk + 1)); else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging")) batt_info->status = CS_CHARGING; else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full")) batt_info->status = CS_FULL; else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Discharging") || BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Not charging")) batt_info->status = CS_DISCHARGING; else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=")) batt_info->status = CS_UNKNOWN; else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN=") || BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN=")) batt_info->full_design = atoi(walk + 1); else if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL=") || BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL=")) batt_info->full_last = atoi(walk + 1); } /* the difference between POWER_SUPPLY_ENERGY_NOW and * POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is * given in mWh, the charge in mAh. So calculate every value given in * ampere to watt */ if (!watt_as_unit && voltage >= 0) { if (batt_info->present_rate > 0) { batt_info->present_rate = (((float)voltage / 1000.0) * ((float)batt_info->present_rate / 1000.0)); } if (batt_info->remaining > 0) { batt_info->remaining = (((float)voltage / 1000.0) * ((float)batt_info->remaining / 1000.0)); } if (batt_info->full_design > 0) { batt_info->full_design = (((float)voltage / 1000.0) * ((float)batt_info->full_design / 1000.0)); } if (batt_info->full_last > 0) { batt_info->full_last = (((float)voltage / 1000.0) * ((float)batt_info->full_last / 1000.0)); } } #elif defined(__DragonFly__) union acpi_battery_ioctl_arg battio; if (acpi_init()) { battio.unit = number; ioctl(acpifd, ACPIIO_BATT_GET_BIF, &battio); batt_info->full_design = battio.bif.dcap; batt_info->full_last = battio.bif.lfcap; battio.unit = number; ioctl(acpifd, ACPIIO_BATT_GET_BATTINFO, &battio); batt_info->percentage_remaining = battio.battinfo.cap; batt_info->present_rate = battio.battinfo.rate; batt_info->seconds_remaining = battio.battinfo.min * 60; switch (battio.battinfo.state) { case 0: batt_info->status = CS_FULL; break; case ACPI_BATT_STAT_CHARGING: batt_info->status = CS_CHARGING; break; case ACPI_BATT_STAT_DISCHARG: batt_info->status = CS_DISCHARGING; break; default: batt_info->status = CS_UNKNOWN; } OUTPUT_FULL_TEXT(format_down); } #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) int state; int sysctl_rslt; size_t sysctl_size = sizeof(sysctl_rslt); if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) { OUTPUT_FULL_TEXT(format_down); return false; } batt_info->percentage_remaining = sysctl_rslt; if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) { OUTPUT_FULL_TEXT(format_down); return false; } batt_info->seconds_remaining = sysctl_rslt * 60; if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) { OUTPUT_FULL_TEXT(format_down); return false; } state = sysctl_rslt; if (state == 0 && batt_info->percentage_remaining == 100) batt_info->status = CS_FULL; else if ((state & ACPI_BATT_STAT_CHARGING) && batt_info->percentage_remaining < 100) batt_info->status = CS_CHARGING; else batt_info->status = CS_DISCHARGING; #elif defined(__OpenBSD__) /* * We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and * the generic interface on macppc/sparc64/zaurus. Machines that have ACPI * battery sensors gain some extra information. */ struct apm_power_info apm_info; struct sensordev sensordev; struct sensor sensor; size_t sdlen, slen; int apm_fd; int dev, mib[5] = {CTL_HW, HW_SENSORS, 0, 0, 0}; int volts = 0; apm_fd = open("/dev/apm", O_RDONLY); if (apm_fd < 0) { OUTPUT_FULL_TEXT("can't open /dev/apm"); return false; } if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0) OUTPUT_FULL_TEXT("can't read power info"); close(apm_fd); /* Don't bother to go further if there's no battery present. */ if ((apm_info.battery_state == APM_BATTERY_ABSENT) || (apm_info.battery_state == APM_BATT_UNKNOWN)) { OUTPUT_FULL_TEXT(format_down); return false; } switch (apm_info.ac_state) { case APM_AC_OFF: batt_info->status = CS_DISCHARGING; break; case APM_AC_ON: batt_info->status = CS_CHARGING; break; default: /* If we don't know what's going on, just assume we're discharging. */ batt_info->status = CS_DISCHARGING; break; } batt_info->percentage_remaining = apm_info.battery_life; /* Can't give a meaningful value for remaining minutes if we're charging. */ if (batt_info->status != CS_CHARGING) { batt_info->seconds_remaining = apm_info.minutes_left * 60; } /* If acpibat* are present, check sensors for data not present via APM. */ batt_info->present_rate = 0; sdlen = sizeof(sensordev); slen = sizeof(sensor); for (dev = 0;; dev++) { mib[2] = dev; if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) { break; } /* 'path' is the node within the full path */ if (BEGINS_WITH(sensordev.xname, "acpibat")) { /* power0 */ mib[3] = SENSOR_WATTS; mib[4] = 0; if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) { /* try current0 */ mib[3] = SENSOR_AMPS; if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) continue; volts = sensor.value; /* we also need current voltage to convert amps to watts */ mib[3] = SENSOR_VOLTS_DC; mib[4] = 1; if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) continue; batt_info->present_rate += (((float)volts / 1000.0) * ((float)sensor.value / 1000.0)); } else { batt_info->present_rate += sensor.value; } } } #elif defined(__NetBSD__) /* * Using envsys(4) via sysmon(4). */ int fd, rval; bool is_found = false; char sensor_desc[16]; prop_dictionary_t dict; prop_array_t array; prop_object_iterator_t iter; prop_object_iterator_t iter2; prop_object_t obj, obj2, obj3, obj4, obj5; if (number >= 0) (void)snprintf(sensor_desc, sizeof(sensor_desc), "acpibat%d", number); fd = open("/dev/sysmon", O_RDONLY); if (fd < 0) { OUTPUT_FULL_TEXT("can't open /dev/sysmon"); return false; } rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict); if (rval == -1) { close(fd); return false; } if (prop_dictionary_count(dict) == 0) { prop_object_release(dict); close(fd); return false; } iter = prop_dictionary_iterator(dict); if (iter == NULL) { prop_object_release(dict); close(fd); } /* iterate over the dictionary returned by the kernel */ while ((obj = prop_object_iterator_next(iter)) != NULL) { /* skip this dict if it's not what we're looking for */ if (number < 0) { /* we want all batteries */ if (!BEGINS_WITH(prop_dictionary_keysym_cstring_nocopy(obj), "acpibat")) continue; } else { /* we want a specific battery */ if (strcmp(sensor_desc, prop_dictionary_keysym_cstring_nocopy(obj)) != 0) continue; } is_found = true; array = prop_dictionary_get_keysym(dict, obj); if (prop_object_type(array) != PROP_TYPE_ARRAY) { prop_object_iterator_release(iter); prop_object_release(dict); close(fd); return false; } iter2 = prop_array_iterator(array); if (!iter2) { prop_object_iterator_release(iter); prop_object_release(dict); close(fd); return false; } struct battery_info batt_buf = { .full_design = 0, .full_last = 0, .remaining = 0, .present_rate = 0, .status = CS_UNKNOWN, }; int voltage = -1; bool watt_as_unit = false; /* iterate over array of dicts specific to target battery */ while ((obj2 = prop_object_iterator_next(iter2)) != NULL) { obj3 = prop_dictionary_get(obj2, "description"); if (obj3 == NULL) continue; if (strcmp("charging", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); if (prop_number_integer_value(obj3)) batt_buf.status = CS_CHARGING; else batt_buf.status = CS_DISCHARGING; } else if (strcmp("charge", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); obj4 = prop_dictionary_get(obj2, "max-value"); obj5 = prop_dictionary_get(obj2, "type"); batt_buf.remaining = prop_number_integer_value(obj3); batt_buf.full_design = prop_number_integer_value(obj4); if (strcmp("Ampere hour", prop_string_cstring_nocopy(obj5)) == 0) watt_as_unit = false; else watt_as_unit = true; } else if (strcmp("discharge rate", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); batt_buf.present_rate = prop_number_integer_value(obj3); } else if (strcmp("charge rate", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); batt_info->present_rate = prop_number_integer_value(obj3); } else if (strcmp("last full cap", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); batt_buf.full_last = prop_number_integer_value(obj3); } else if (strcmp("voltage", prop_string_cstring_nocopy(obj3)) == 0) { obj3 = prop_dictionary_get(obj2, "cur-value"); voltage = prop_number_integer_value(obj3); } } prop_object_iterator_release(iter2); if (!watt_as_unit && voltage != -1) { batt_buf.present_rate = (((float)voltage / 1000.0) * ((float)batt_buf.present_rate / 1000.0)); batt_buf.remaining = (((float)voltage / 1000.0) * ((float)batt_buf.remaining / 1000.0)); batt_buf.full_design = (((float)voltage / 1000.0) * ((float)batt_buf.full_design / 1000.0)); batt_buf.full_last = (((float)voltage / 1000.0) * ((float)batt_buf.full_last / 1000.0)); } if (batt_buf.remaining == batt_buf.full_design) batt_buf.status = CS_FULL; add_battery_info(batt_info, &batt_buf); } prop_object_iterator_release(iter); prop_object_release(dict); close(fd); if (!is_found) { OUTPUT_FULL_TEXT(format_down); return false; } batt_info->present_rate = abs(batt_info->present_rate); #endif return true; } /* * Populate batt_info with aggregate information about all batteries. * Returns false on error, and an error message will have been written. */ static bool slurp_all_batteries(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, const char *path, const char *format_down) { #if defined(__linux__) char *outwalk = buffer; bool is_found = false; char *placeholder; char *globpath = sstrdup(path); if ((placeholder = strstr(path, "%d")) != NULL) { char *globplaceholder = globpath + (placeholder - path); *globplaceholder = '*'; strcpy(globplaceholder + 1, placeholder + 2); } if (!strcmp(globpath, path)) { OUTPUT_FULL_TEXT("no '%d' in battery path"); return false; } glob_t globbuf; if (glob(globpath, 0, NULL, &globbuf) == 0) { for (size_t i = 0; i < globbuf.gl_pathc; i++) { /* Probe to see if there is such a battery. */ struct battery_info batt_buf = { .full_design = 0, .full_last = 0, .remaining = 0, .present_rate = 0, .status = CS_UNKNOWN, }; if (!slurp_battery_info(&batt_buf, json_gen, buffer, i, globbuf.gl_pathv[i], format_down)) { globfree(&globbuf); free(globpath); return false; } is_found = true; add_battery_info(batt_info, &batt_buf); } globfree(&globbuf); } free(globpath); if (!is_found) { OUTPUT_FULL_TEXT(format_down); return false; } batt_info->present_rate = abs(batt_info->present_rate); #else /* FreeBSD and OpenBSD only report aggregates. NetBSD always * iterates through all batteries, so it's more efficient to * aggregate in slurp_battery_info. */ return slurp_battery_info(batt_info, json_gen, buffer, -1, path, format_down); #endif return true; } void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, const char *status_chr, const char *status_bat, const char *status_unk, const char *status_full, int low_threshold, char *threshold_type, bool last_full_capacity, bool integer_battery_capacity, bool hide_seconds) { const char *walk; char *outwalk = buffer; struct battery_info batt_info = { .full_design = -1, .full_last = -1, .remaining = -1, .present_rate = -1, .seconds_remaining = -1, .percentage_remaining = -1, .status = CS_UNKNOWN, }; bool colorful_output = false; #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__) /* These OSes report battery stats in whole percent. */ integer_battery_capacity = true; #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__) /* These OSes report battery time in minutes. */ hide_seconds = true; #endif if (number < 0) { if (!slurp_all_batteries(&batt_info, json_gen, buffer, path, format_down)) return; } else { if (!slurp_battery_info(&batt_info, json_gen, buffer, number, path, format_down)) return; } // *Choose* a measure of the 'full' battery. It is whichever is better of // the battery's (hardware-given) design capacity (batt_info.full_design) // and the battery's last known good charge (batt_info.full_last). // We prefer the design capacity, but use the last capacity if we don't have it, // or if we are asked to (last_full_capacity == true); but similarly we use // the design capacity if we don't have the last capacity. // If we don't have either then both full_design and full_last <= 0, // which implies full <= 0, which bails out on the following line. int full = batt_info.full_design; if (full <= 0 || (last_full_capacity && batt_info.full_last > 0)) { full = batt_info.full_last; } if (full <= 0 && batt_info.remaining < 0 && batt_info.percentage_remaining < 0) { /* We have no physical measurements and no estimates. Nothing * much we can report, then. */ OUTPUT_FULL_TEXT(format_down); return; } if (batt_info.percentage_remaining < 0) { batt_info.percentage_remaining = (((float)batt_info.remaining / (float)full) * 100); /* Some batteries report POWER_SUPPLY_CHARGE_NOW= when fully * charged, even though that’s plainly wrong. For people who chose to see * the percentage calculated based on the last full capacity, we clamp the * value to 100%, as that makes more sense. * See http://bugs.debian.org/785398 */ if (last_full_capacity && batt_info.percentage_remaining > 100) { batt_info.percentage_remaining = 100; } } if (batt_info.seconds_remaining < 0 && batt_info.present_rate > 0 && batt_info.status != CS_FULL) { if (batt_info.status == CS_CHARGING) batt_info.seconds_remaining = 3600.0 * (full - batt_info.remaining) / batt_info.present_rate; else if (batt_info.status == CS_DISCHARGING) batt_info.seconds_remaining = 3600.0 * batt_info.remaining / batt_info.present_rate; else batt_info.seconds_remaining = 0; } if (batt_info.status == CS_DISCHARGING && low_threshold > 0) { if (batt_info.percentage_remaining >= 0 && strcasecmp(threshold_type, "percentage") == 0 && batt_info.percentage_remaining < low_threshold) { START_COLOR("color_bad"); colorful_output = true; } else if (batt_info.seconds_remaining >= 0 && strcasecmp(threshold_type, "time") == 0 && batt_info.seconds_remaining < 60 * low_threshold) { START_COLOR("color_bad"); colorful_output = true; } } #define EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT() \ do { \ if (outwalk == prevoutwalk) { \ if (outwalk > buffer && isspace((int)outwalk[-1])) \ outwalk--; \ else if (isspace((int)*(walk + 1))) \ walk++; \ } \ } while (0) for (walk = format; *walk != '\0'; walk++) { char *prevoutwalk = outwalk; if (*walk != '%') { *(outwalk++) = *walk; } else if (BEGINS_WITH(walk + 1, "status")) { const char *statusstr; switch (batt_info.status) { case CS_CHARGING: statusstr = status_chr; break; case CS_DISCHARGING: statusstr = status_bat; break; case CS_FULL: statusstr = status_full; break; default: statusstr = status_unk; } outwalk += sprintf(outwalk, "%s", statusstr); walk += strlen("status"); } else if (BEGINS_WITH(walk + 1, "percentage")) { if (integer_battery_capacity) { outwalk += sprintf(outwalk, "%.00f%s", batt_info.percentage_remaining, pct_mark); } else { outwalk += sprintf(outwalk, "%.02f%s", batt_info.percentage_remaining, pct_mark); } walk += strlen("percentage"); } else if (BEGINS_WITH(walk + 1, "remaining")) { if (batt_info.seconds_remaining >= 0) { int seconds, hours, minutes; hours = batt_info.seconds_remaining / 3600; seconds = batt_info.seconds_remaining - (hours * 3600); minutes = seconds / 60; seconds -= (minutes * 60); if (hide_seconds) outwalk += sprintf(outwalk, "%02d:%02d", max(hours, 0), max(minutes, 0)); else outwalk += sprintf(outwalk, "%02d:%02d:%02d", max(hours, 0), max(minutes, 0), max(seconds, 0)); } walk += strlen("remaining"); EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT(); } else if (BEGINS_WITH(walk + 1, "emptytime")) { if (batt_info.seconds_remaining >= 0) { time_t empty_time = time(NULL) + batt_info.seconds_remaining; set_timezone(NULL); /* Use local time. */ struct tm *empty_tm = localtime(&empty_time); if (hide_seconds) outwalk += sprintf(outwalk, "%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0)); else outwalk += sprintf(outwalk, "%02d:%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0)); } walk += strlen("emptytime"); EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT(); } else if (BEGINS_WITH(walk + 1, "consumption")) { if (batt_info.present_rate >= 0) outwalk += sprintf(outwalk, "%1.2fW", batt_info.present_rate / 1e6); walk += strlen("consumption"); EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT(); } else { *(outwalk++) = '%'; } } if (colorful_output) END_COLOR; OUTPUT_FULL_TEXT(buffer); }