// vim:ts=4:sw=4:expandtab #include #include #include #include #include #include #include #ifdef __linux__ #include #include #include #include #include #include #include #define IW_ESSID_MAX_SIZE 32 #endif #ifdef __APPLE__ #define IW_ESSID_MAX_SIZE 32 #endif #ifdef __FreeBSD__ #include #include #include #include #include #include #include #include #define IW_ESSID_MAX_SIZE IEEE80211_NWID_LEN #endif #ifdef __DragonFly__ #include #include #include #include #include #include #include #include #include #define IW_ESSID_MAX_SIZE IEEE80211_NWID_LEN #endif #ifdef __OpenBSD__ #include #include #include #include #include #include #include #include #define IW_ESSID_MAX_SIZE IEEE80211_NWID_LEN #endif #ifdef __NetBSD__ #include #include #include #define IW_ESSID_MAX_SIZE IEEE80211_NWID_LEN #endif #include "i3status.h" #define STRING_SIZE 30 #define WIRELESS_INFO_FLAG_HAS_ESSID (1 << 0) #define WIRELESS_INFO_FLAG_HAS_QUALITY (1 << 1) #define WIRELESS_INFO_FLAG_HAS_SIGNAL (1 << 2) #define WIRELESS_INFO_FLAG_HAS_NOISE (1 << 3) #define WIRELESS_INFO_FLAG_HAS_FREQUENCY (1 << 4) #define PERCENT_VALUE(value, total) ((int)(value * 100 / (float)total + 0.5f)) typedef struct { int flags; #ifdef IW_ESSID_MAX_SIZE char essid[IW_ESSID_MAX_SIZE + 1]; #endif #ifdef __linux__ uint8_t bssid[ETH_ALEN]; #endif int quality; int quality_max; int quality_average; int signal_level; int signal_level_max; int noise_level; int noise_level_max; int bitrate; double frequency; } wireless_info_t; #ifdef __linux__ // Like iw_print_bitrate, but without the dependency on libiw. static void print_bitrate(char *buffer, int buflen, int bitrate, const char *format_bitrate) { const int kilo = 1e3; const int mega = 1e6; const int giga = 1e9; const double rate = bitrate; char scale; int divisor; if (rate >= giga) { scale = 'G'; divisor = giga; } else if (rate >= mega) { scale = 'M'; divisor = mega; } else { scale = 'k'; divisor = kilo; } snprintf(buffer, buflen, format_bitrate, rate / divisor, scale); } // Based on NetworkManager/src/platform/wifi/wifi-utils-nl80211.c static uint32_t nl80211_xbm_to_percent(int32_t xbm, int32_t divisor) { #define NOISE_FLOOR_DBM -90 #define SIGNAL_MAX_DBM -20 xbm /= divisor; if (xbm < NOISE_FLOOR_DBM) xbm = NOISE_FLOOR_DBM; if (xbm > SIGNAL_MAX_DBM) xbm = SIGNAL_MAX_DBM; return 100 - 70 * (((float)SIGNAL_MAX_DBM - (float)xbm) / ((float)SIGNAL_MAX_DBM - (float)NOISE_FLOOR_DBM)); } // Based on NetworkManager/src/platform/wifi/wifi-utils-nl80211.c static void find_ssid(uint8_t *ies, uint32_t ies_len, uint8_t **ssid, uint32_t *ssid_len) { #define WLAN_EID_SSID 0 *ssid = NULL; *ssid_len = 0; while (ies_len > 2 && ies[0] != WLAN_EID_SSID) { ies_len -= ies[1] + 2; ies += ies[1] + 2; } if (ies_len < 2) return; if (ies_len < (uint32_t)(2 + ies[1])) return; *ssid_len = ies[1]; *ssid = ies + 2; } static int gwi_sta_cb(struct nl_msg *msg, void *data) { wireless_info_t *info = data; struct nlattr *tb[NL80211_ATTR_MAX + 1]; struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg)); struct nlattr *sinfo[NL80211_STA_INFO_MAX + 1]; struct nlattr *rinfo[NL80211_RATE_INFO_MAX + 1]; static struct nla_policy stats_policy[NL80211_STA_INFO_MAX + 1] = { [NL80211_STA_INFO_RX_BITRATE] = {.type = NLA_NESTED}, }; static struct nla_policy rate_policy[NL80211_RATE_INFO_MAX + 1] = { [NL80211_RATE_INFO_BITRATE] = {.type = NLA_U16}, }; if (nla_parse(tb, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0), genlmsg_attrlen(gnlh, 0), NULL) < 0) return NL_SKIP; if (tb[NL80211_ATTR_STA_INFO] == NULL) return NL_SKIP; if (nla_parse_nested(sinfo, NL80211_STA_INFO_MAX, tb[NL80211_ATTR_STA_INFO], stats_policy)) return NL_SKIP; if (sinfo[NL80211_STA_INFO_RX_BITRATE] == NULL) return NL_SKIP; if (nla_parse_nested(rinfo, NL80211_RATE_INFO_MAX, sinfo[NL80211_STA_INFO_RX_BITRATE], rate_policy)) return NL_SKIP; if (rinfo[NL80211_RATE_INFO_BITRATE] == NULL) return NL_SKIP; // NL80211_RATE_INFO_BITRATE is specified in units of 100 kbit/s, but iw // used to specify bit/s, so we convert to use the same code path. info->bitrate = (int)nla_get_u16(rinfo[NL80211_RATE_INFO_BITRATE]) * 100 * 1000; if (sinfo[NL80211_STA_INFO_SIGNAL] != NULL) { info->flags |= WIRELESS_INFO_FLAG_HAS_SIGNAL; info->signal_level = (int8_t)nla_get_u8(sinfo[NL80211_STA_INFO_SIGNAL]); info->flags |= WIRELESS_INFO_FLAG_HAS_QUALITY; info->quality = nl80211_xbm_to_percent(info->signal_level, 1); info->quality_max = 100; info->quality_average = 50; } return NL_SKIP; } static int gwi_scan_cb(struct nl_msg *msg, void *data) { wireless_info_t *info = data; struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg)); struct nlattr *tb[NL80211_ATTR_MAX + 1]; struct nlattr *bss[NL80211_BSS_MAX + 1]; struct nla_policy bss_policy[NL80211_BSS_MAX + 1] = { [NL80211_BSS_FREQUENCY] = {.type = NLA_U32}, [NL80211_BSS_BSSID] = {.type = NLA_UNSPEC}, [NL80211_BSS_INFORMATION_ELEMENTS] = {.type = NLA_UNSPEC}, [NL80211_BSS_SIGNAL_MBM] = {.type = NLA_U32}, [NL80211_BSS_SIGNAL_UNSPEC] = {.type = NLA_U8}, [NL80211_BSS_STATUS] = {.type = NLA_U32}, }; if (nla_parse(tb, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0), genlmsg_attrlen(gnlh, 0), NULL) < 0) return NL_SKIP; if (tb[NL80211_ATTR_BSS] == NULL) return NL_SKIP; if (nla_parse_nested(bss, NL80211_BSS_MAX, tb[NL80211_ATTR_BSS], bss_policy)) return NL_SKIP; if (bss[NL80211_BSS_STATUS] == NULL) return NL_SKIP; const uint32_t status = nla_get_u32(bss[NL80211_BSS_STATUS]); if (status != NL80211_BSS_STATUS_ASSOCIATED && status != NL80211_BSS_STATUS_IBSS_JOINED) return NL_SKIP; if (bss[NL80211_BSS_BSSID] == NULL) return NL_SKIP; memcpy(info->bssid, nla_data(bss[NL80211_BSS_BSSID]), ETH_ALEN); if (bss[NL80211_BSS_FREQUENCY]) { info->flags |= WIRELESS_INFO_FLAG_HAS_FREQUENCY; info->frequency = (double)nla_get_u32(bss[NL80211_BSS_FREQUENCY]) * 1e6; } if (bss[NL80211_BSS_SIGNAL_UNSPEC]) { info->flags |= WIRELESS_INFO_FLAG_HAS_SIGNAL; info->signal_level = nla_get_u8(bss[NL80211_BSS_SIGNAL_UNSPEC]); info->signal_level_max = 100; info->flags |= WIRELESS_INFO_FLAG_HAS_QUALITY; info->quality = info->signal_level; info->quality_max = 100; info->quality_average = 50; } if (bss[NL80211_BSS_SIGNAL_MBM]) { info->flags |= WIRELESS_INFO_FLAG_HAS_SIGNAL; info->signal_level = (int)nla_get_u32(bss[NL80211_BSS_SIGNAL_MBM]) / 100; info->flags |= WIRELESS_INFO_FLAG_HAS_QUALITY; info->quality = nl80211_xbm_to_percent(nla_get_u32(bss[NL80211_BSS_SIGNAL_MBM]), 100); info->quality_max = 100; info->quality_average = 50; } if (bss[NL80211_BSS_INFORMATION_ELEMENTS]) { uint8_t *ssid; uint32_t ssid_len; find_ssid(nla_data(bss[NL80211_BSS_INFORMATION_ELEMENTS]), nla_len(bss[NL80211_BSS_INFORMATION_ELEMENTS]), &ssid, &ssid_len); if (ssid && ssid_len) { info->flags |= WIRELESS_INFO_FLAG_HAS_ESSID; snprintf(info->essid, sizeof(info->essid), "%.*s", ssid_len, ssid); } } return NL_SKIP; } #endif static int get_wireless_info(const char *interface, wireless_info_t *info) { memset(info, 0, sizeof(wireless_info_t)); #ifdef __linux__ struct nl_sock *sk = nl_socket_alloc(); if (genl_connect(sk) != 0) goto error1; if (nl_socket_modify_cb(sk, NL_CB_VALID, NL_CB_CUSTOM, gwi_scan_cb, info) < 0) goto error1; const int nl80211_id = genl_ctrl_resolve(sk, "nl80211"); if (nl80211_id < 0) goto error1; const unsigned int ifidx = if_nametoindex(interface); if (ifidx == 0) goto error1; struct nl_msg *msg = NULL; if ((msg = nlmsg_alloc()) == NULL) goto error1; if (!genlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, nl80211_id, 0, NLM_F_DUMP, NL80211_CMD_GET_SCAN, 0) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, ifidx) < 0) goto error2; if (nl_send_sync(sk, msg) < 0) // nl_send_sync calls nlmsg_free() goto error1; msg = NULL; if (nl_socket_modify_cb(sk, NL_CB_VALID, NL_CB_CUSTOM, gwi_sta_cb, info) < 0) goto error1; if ((msg = nlmsg_alloc()) == NULL) goto error1; if (!genlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, nl80211_id, 0, NLM_F_DUMP, NL80211_CMD_GET_STATION, 0) || nla_put_u32(msg, NL80211_ATTR_IFINDEX, ifidx) < 0 || nla_put(msg, NL80211_ATTR_MAC, 6, info->bssid) < 0) goto error2; if (nl_send_sync(sk, msg) < 0) // nl_send_sync calls nlmsg_free() goto error1; msg = NULL; nl_socket_free(sk); return 1; error2: nlmsg_free(msg); error1: nl_socket_free(sk); return 0; #endif #if defined(__FreeBSD__) || defined(__DragonFly__) int s, inwid; union { struct ieee80211req_sta_req req; uint8_t buf[24 * 1024]; } u; struct ieee80211req na; char bssid[IEEE80211_ADDR_LEN]; size_t len; if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == -1) return (0); memset(&na, 0, sizeof(na)); strlcpy(na.i_name, interface, sizeof(na.i_name)); na.i_type = IEEE80211_IOC_SSID; na.i_data = &info->essid[0]; na.i_len = IEEE80211_NWID_LEN + 1; if ((inwid = ioctl(s, SIOCG80211, (caddr_t)&na)) == -1) { close(s); return (0); } if (inwid == 0) { if (na.i_len <= IEEE80211_NWID_LEN) len = na.i_len + 1; else len = IEEE80211_NWID_LEN + 1; info->essid[len - 1] = '\0'; } else { close(s); return (0); } info->flags |= WIRELESS_INFO_FLAG_HAS_ESSID; memset(&na, 0, sizeof(na)); strlcpy(na.i_name, interface, sizeof(na.i_name)); na.i_type = IEEE80211_IOC_BSSID; na.i_data = bssid; na.i_len = sizeof(bssid); if (ioctl(s, SIOCG80211, (caddr_t)&na) == -1) { close(s); return (0); } memcpy(u.req.is_u.macaddr, bssid, sizeof(bssid)); memset(&na, 0, sizeof(na)); strlcpy(na.i_name, interface, sizeof(na.i_name)); na.i_type = IEEE80211_IOC_STA_INFO; na.i_data = &u; na.i_len = sizeof(u); if (ioctl(s, SIOCG80211, (caddr_t)&na) == -1) { close(s); return (0); } close(s); if (na.i_len >= sizeof(u.req)) { /* * Just use the first BSSID returned even if there are * multiple APs sharing the same BSSID. */ info->signal_level = u.req.info[0].isi_rssi / 2 + u.req.info[0].isi_noise; info->flags |= WIRELESS_INFO_FLAG_HAS_SIGNAL; info->noise_level = u.req.info[0].isi_noise; info->flags |= WIRELESS_INFO_FLAG_HAS_NOISE; } return 1; #endif #ifdef __OpenBSD__ struct ifreq ifr; struct ieee80211_bssid bssid; struct ieee80211_nwid nwid; struct ieee80211_nodereq nr; struct ether_addr ea; int s, len, ibssid, inwid; u_int8_t zero_bssid[IEEE80211_ADDR_LEN]; if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == -1) return (0); memset(&ifr, 0, sizeof(ifr)); ifr.ifr_data = (caddr_t)&nwid; (void)strlcpy(ifr.ifr_name, interface, sizeof(ifr.ifr_name)); inwid = ioctl(s, SIOCG80211NWID, (caddr_t)&ifr); memset(&bssid, 0, sizeof(bssid)); strlcpy(bssid.i_name, interface, sizeof(bssid.i_name)); ibssid = ioctl(s, SIOCG80211BSSID, &bssid); if (ibssid != 0 || inwid != 0) { close(s); return 0; } /* NWID */ { if (nwid.i_len <= IEEE80211_NWID_LEN) len = nwid.i_len + 1; else len = IEEE80211_NWID_LEN + 1; strncpy(&info->essid[0], (char *)nwid.i_nwid, len); info->essid[IW_ESSID_MAX_SIZE] = '\0'; info->flags |= WIRELESS_INFO_FLAG_HAS_ESSID; } /* Signal strength */ { memset(&zero_bssid, 0, sizeof(zero_bssid)); if (ibssid == 0 && memcmp(bssid.i_bssid, zero_bssid, IEEE80211_ADDR_LEN) != 0) { memcpy(&ea.ether_addr_octet, bssid.i_bssid, sizeof(ea.ether_addr_octet)); bzero(&nr, sizeof(nr)); bcopy(bssid.i_bssid, &nr.nr_macaddr, sizeof(nr.nr_macaddr)); strlcpy(nr.nr_ifname, interface, sizeof(nr.nr_ifname)); if (ioctl(s, SIOCG80211NODE, &nr) == 0 && nr.nr_rssi) { info->signal_level = nr.nr_rssi; if (nr.nr_max_rssi) info->signal_level_max = nr.nr_max_rssi; info->flags |= WIRELESS_INFO_FLAG_HAS_SIGNAL; } } } close(s); return 1; #endif return 0; } /* Table summarizing what is the decision to prefer IPv4 or IPv6 * based their values. * * | ipv4_address | ipv6_address | Chosen IP | Color | * |--------------|--------------|-----------|-------------------| * | NULL | NULL | None | bad (red) | * | NULL | no IP | IPv6 | degraded (orange) | * | NULL | ::1/128 | IPv6 | ok (green) | * | no IP | NULL | IPv4 | degraded | * | no IP | no IP | IPv4 | degraded | * | no IP | ::1/128 | IPv6 | ok | * | 127.0.0.1 | NULL | IPv4 | ok | * | 127.0.0.1 | no IP | IPv4 | ok | * | 127.0.0.1 | ::1/128 | IPv4 | ok | */ void print_wireless_info(yajl_gen json_gen, char *buffer, const char *interface, const char *format_up, const char *format_down, const char *format_bitrate, const char *format_noise, const char *format_quality, const char *format_signal) { const char *walk; char *outwalk = buffer; wireless_info_t info; INSTANCE(interface); char *ipv4_address = sstrdup(get_ip_addr(interface, AF_INET)); char *ipv6_address = sstrdup(get_ip_addr(interface, AF_INET6)); /* * Removing '%' and following characters from IPv6 since the interface identifier is redundant, * as the output already includes the interface name. */ if (ipv6_address != NULL) { char *prct_ptr = strstr(ipv6_address, "%"); if (prct_ptr != NULL) { *prct_ptr = '\0'; } } bool prefer_ipv4 = true; if (ipv4_address == NULL) { if (ipv6_address == NULL) { START_COLOR("color_bad"); outwalk += sprintf(outwalk, "%s", format_down); goto out; } else { prefer_ipv4 = false; } } else if (BEGINS_WITH(ipv4_address, "no IP") && ipv6_address != NULL && !BEGINS_WITH(ipv6_address, "no IP")) { prefer_ipv4 = false; } const char *ip_address = (prefer_ipv4) ? ipv4_address : ipv6_address; if (!get_wireless_info(interface, &info)) { walk = format_down; START_COLOR("color_bad"); } else { walk = format_up; if (info.flags & WIRELESS_INFO_FLAG_HAS_QUALITY) START_COLOR((info.quality < info.quality_average ? "color_degraded" : "color_good")); else { if (BEGINS_WITH(ip_address, "no IP")) { START_COLOR("color_degraded"); } else { START_COLOR("color_good"); } } } char string_quality[STRING_SIZE]; char string_signal[STRING_SIZE]; char string_noise[STRING_SIZE]; char string_essid[STRING_SIZE]; char string_frequency[STRING_SIZE]; char string_ip[STRING_SIZE]; char string_bitrate[STRING_SIZE]; if (info.flags & WIRELESS_INFO_FLAG_HAS_QUALITY) { if (info.quality_max) snprintf(string_quality, STRING_SIZE, format_quality, PERCENT_VALUE(info.quality, info.quality_max), pct_mark); else snprintf(string_quality, STRING_SIZE, "%d", info.quality); } else { snprintf(string_quality, STRING_SIZE, "?"); } if (info.flags & WIRELESS_INFO_FLAG_HAS_SIGNAL) { if (info.signal_level_max) snprintf(string_signal, STRING_SIZE, format_signal, PERCENT_VALUE(info.signal_level, info.signal_level_max), pct_mark); else snprintf(string_signal, STRING_SIZE, "%d dBm", info.signal_level); } else { snprintf(string_signal, STRING_SIZE, "?"); } if (info.flags & WIRELESS_INFO_FLAG_HAS_NOISE) { if (info.noise_level_max) snprintf(string_noise, STRING_SIZE, format_noise, PERCENT_VALUE(info.noise_level, info.noise_level_max), pct_mark); else snprintf(string_noise, STRING_SIZE, "%d dBm", info.noise_level); } else { snprintf(string_noise, STRING_SIZE, "?"); } char *tmp = string_essid; #ifdef IW_ESSID_MAX_SIZE if (info.flags & WIRELESS_INFO_FLAG_HAS_ESSID) maybe_escape_markup(info.essid, &tmp); else #endif snprintf(string_essid, STRING_SIZE, "?"); if (info.flags & WIRELESS_INFO_FLAG_HAS_FREQUENCY) snprintf(string_frequency, STRING_SIZE, "%1.1f GHz", info.frequency / 1e9); else snprintf(string_frequency, STRING_SIZE, "?"); snprintf(string_ip, STRING_SIZE, "%s", ip_address); #ifdef __linux__ char br_buffer[128]; print_bitrate(br_buffer, sizeof(br_buffer), info.bitrate, format_bitrate); #endif placeholder_t placeholders[] = { {.name = "%quality", .value = string_quality}, {.name = "%signal", .value = string_signal}, {.name = "%noise", .value = string_noise}, {.name = "%essid", .value = string_essid}, {.name = "%frequency", .value = string_frequency}, {.name = "%ip", .value = string_ip}, {.name = "%bitrate", .value = string_bitrate}}; const size_t num = sizeof(placeholders) / sizeof(placeholder_t); buffer = format_placeholders(walk, &placeholders[0], num); out: END_COLOR; free(ipv4_address); free(ipv6_address); OUTPUT_FULL_TEXT(buffer); free(buffer); }