1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
// vim:ts=4:sw=4:expandtab
#include <ctype.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <yajl/yajl_gen.h>
#include <yajl/yajl_version.h>
#include "i3status.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <dev/acpica/acpiio.h>
#endif
#if defined(__OpenBSD__)
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <machine/apmvar.h>
#endif
#if defined(__NetBSD__)
#include <fcntl.h>
#include <prop/proplib.h>
#include <sys/envsys.h>
#endif
struct battery_info {
int present_rate;
int seconds_remaining;
float percentage_remaining;
charging_status_t status;
};
/*
* Estimate the number of seconds remaining in state 'status'.
*
* Assumes a constant (dis)charge rate.
*/
static int seconds_remaining_from_rate(charging_status_t status, float full_design, float remaining, float present_rate) {
if (status == CS_CHARGING)
return 3600.0 * (full_design - remaining) / present_rate;
else if (status == CS_DISCHARGING)
return 3600.0 * remaining / present_rate;
else
return 0;
}
/*
* Get battery information from /sys. Note that it uses the design capacity to
* calculate the percentage, not the last full capacity, so you can see how
* worn off your battery is.
*
*/
void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, const char *status_chr, const char *status_bat, const char *status_unk, const char *status_full, int low_threshold, char *threshold_type, bool last_full_capacity, bool integer_battery_capacity, bool hide_seconds) {
char buf[1024];
const char *walk, *last;
char *outwalk = buffer;
bool watt_as_unit = false;
int full_design = -1,
remaining = -1,
voltage = -1;
struct battery_info batt_info = {
.present_rate = -1,
.seconds_remaining = -1,
.percentage_remaining = -1,
.status = CS_DISCHARGING,
};
static char batpath[512];
sprintf(batpath, path, number);
INSTANCE(batpath);
#if defined(LINUX)
if (!slurp(batpath, buf, sizeof(buf))) {
OUTPUT_FULL_TEXT(format_down);
return;
}
for (walk = buf, last = buf; (walk - buf) < 1024; walk++) {
if (*walk == '\n') {
last = walk + 1;
continue;
}
if (*walk != '=')
continue;
if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW")) {
watt_as_unit = true;
remaining = atoi(walk + 1);
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW")) {
watt_as_unit = false;
remaining = atoi(walk + 1);
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW"))
batt_info.present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW"))
voltage = abs(atoi(walk + 1));
/* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually
* it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as
* unit instead of μAh. We will calculate it as we need it
* later. */
else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW"))
batt_info.present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging"))
batt_info.status = CS_CHARGING;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full"))
batt_info.status = CS_FULL;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Discharging"))
batt_info.status = CS_DISCHARGING;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS="))
batt_info.status = CS_UNKNOWN;
else {
/* The only thing left is the full capacity */
if (last_full_capacity) {
if (!BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL") &&
!BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL"))
continue;
} else {
if (!BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN") &&
!BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN"))
continue;
}
full_design = atoi(walk + 1);
}
}
/* the difference between POWER_SUPPLY_ENERGY_NOW and
* POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is
* given in mWh, the charge in mAh. So calculate every value given in
* ampere to watt */
if (!watt_as_unit) {
batt_info.present_rate = (((float)voltage / 1000.0) * ((float)batt_info.present_rate / 1000.0));
if (voltage != -1) {
remaining = (((float)voltage / 1000.0) * ((float)remaining / 1000.0));
full_design = (((float)voltage / 1000.0) * ((float)full_design / 1000.0));
}
}
if ((full_design == -1) || (remaining == -1)) {
OUTPUT_FULL_TEXT(format_down);
return;
}
batt_info.percentage_remaining = (((float)remaining / (float)full_design) * 100);
/* Some batteries report POWER_SUPPLY_CHARGE_NOW=<full_design> when fully
* charged, even though that’s plainly wrong. For people who chose to see
* the percentage calculated based on the last full capacity, we clamp the
* value to 100%, as that makes more sense.
* See http://bugs.debian.org/785398 */
if (last_full_capacity && batt_info.percentage_remaining > 100) {
batt_info.percentage_remaining = 100;
}
if (batt_info.present_rate > 0 && batt_info.status != CS_FULL) {
batt_info.seconds_remaining = seconds_remaining_from_rate(batt_info.status, full_design, remaining, batt_info.present_rate);
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
int state;
int sysctl_rslt;
size_t sysctl_size = sizeof(sysctl_rslt);
if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return;
}
integer_battery_capacity = true;
batt_info.percentage_remaining = sysctl_rslt;
if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return;
}
hide_seconds = true;
batt_info.seconds_remaining = sysctl_rslt * 60;
if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return;
}
state = sysctl_rslt;
if (state == 0 && batt_info.percentage_remaining == 100)
batt_info.status = CS_FULL;
else if ((state & ACPI_BATT_STAT_CHARGING) && batt_info.percentage_remaining < 100)
batt_info.status = CS_CHARGING;
else
batt_info.status = CS_DISCHARGING;
full_design = sysctl_rslt;
#elif defined(__OpenBSD__)
/*
* We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and
* the generic interface on macppc/sparc64/zaurus, instead of using sysctl(3) and
* probing acpi(4) devices.
*/
struct apm_power_info apm_info;
int apm_fd;
apm_fd = open("/dev/apm", O_RDONLY);
if (apm_fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/apm");
return;
}
if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0)
OUTPUT_FULL_TEXT("can't read power info");
close(apm_fd);
/* Don't bother to go further if there's no battery present. */
if ((apm_info.battery_state == APM_BATTERY_ABSENT) ||
(apm_info.battery_state == APM_BATT_UNKNOWN)) {
OUTPUT_FULL_TEXT(format_down);
return;
}
switch (apm_info.ac_state) {
case APM_AC_OFF:
batt_info.status = CS_DISCHARGING;
break;
case APM_AC_ON:
batt_info.status = CS_CHARGING;
break;
default:
/* If we don't know what's going on, just assume we're discharging. */
batt_info.status = CS_DISCHARGING;
break;
}
integer_battery_capacity = true;
batt_info.percentage_remaining = apm_info.battery_life;
/* Can't give a meaningful value for remaining minutes if we're charging. */
if (batt_info.status != CS_CHARGING) {
batt_info.seconds_remaining = apm_info.minutes_left * 60;
}
#elif defined(__NetBSD__)
/*
* Using envsys(4) via sysmon(4).
*/
int fd, rval, last_full_cap;
bool is_found = false;
char *sensor_desc;
bool is_full = false;
prop_dictionary_t dict;
prop_array_t array;
prop_object_iterator_t iter;
prop_object_iterator_t iter2;
prop_object_t obj, obj2, obj3, obj4, obj5;
asprintf(&sensor_desc, "acpibat%d", number);
fd = open("/dev/sysmon", O_RDONLY);
if (fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/sysmon");
return;
}
rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict);
if (rval == -1) {
close(fd);
return;
}
if (prop_dictionary_count(dict) == 0) {
prop_object_release(dict);
close(fd);
return;
}
iter = prop_dictionary_iterator(dict);
if (iter == NULL) {
prop_object_release(dict);
close(fd);
}
/* iterate over the dictionary returned by the kernel */
while ((obj = prop_object_iterator_next(iter)) != NULL) {
/* skip this dict if it's not what we're looking for */
if ((strlen(prop_dictionary_keysym_cstring_nocopy(obj)) == strlen(sensor_desc)) &&
(strncmp(sensor_desc,
prop_dictionary_keysym_cstring_nocopy(obj),
strlen(sensor_desc)) != 0))
continue;
is_found = true;
array = prop_dictionary_get_keysym(dict, obj);
if (prop_object_type(array) != PROP_TYPE_ARRAY) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return;
}
iter2 = prop_array_iterator(array);
if (!iter2) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return;
}
/* iterate over array of dicts specific to target battery */
while ((obj2 = prop_object_iterator_next(iter2)) != NULL) {
obj3 = prop_dictionary_get(obj2, "description");
if (obj3 &&
strlen(prop_string_cstring_nocopy(obj3)) == 8 &&
strncmp("charging",
prop_string_cstring_nocopy(obj3),
8) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
if (prop_number_integer_value(obj3))
batt_info.status = CS_CHARGING;
else
batt_info.status = CS_DISCHARGING;
continue;
}
if (obj3 &&
strlen(prop_string_cstring_nocopy(obj3)) == 6 &&
strncmp("charge",
prop_string_cstring_nocopy(obj3),
6) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
obj4 = prop_dictionary_get(obj2, "max-value");
obj5 = prop_dictionary_get(obj2, "type");
remaining = prop_number_integer_value(obj3);
full_design = prop_number_integer_value(obj4);
if (remaining == full_design)
is_full = true;
if (strncmp("Ampere hour",
prop_string_cstring_nocopy(obj5),
11) == 0)
watt_as_unit = false;
else
watt_as_unit = true;
continue;
}
if (obj3 &&
strlen(prop_string_cstring_nocopy(obj3)) == 14 &&
strncmp("discharge rate",
prop_string_cstring_nocopy(obj3),
14) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_info.present_rate = prop_number_integer_value(obj3);
continue;
}
if (obj3 &&
strlen(prop_string_cstring_nocopy(obj3)) == 13 &&
strncmp("last full cap",
prop_string_cstring_nocopy(obj3),
13) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
last_full_cap = prop_number_integer_value(obj3);
continue;
}
if (obj3 &&
strlen(prop_string_cstring_nocopy(obj3)) == 7 &&
strncmp("voltage",
prop_string_cstring_nocopy(obj3),
7) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
voltage = prop_number_integer_value(obj3);
continue;
}
}
prop_object_iterator_release(iter2);
}
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
if (!is_found) {
OUTPUT_FULL_TEXT(format_down);
return;
}
if (last_full_capacity)
full_design = last_full_cap;
if (!watt_as_unit) {
batt_info.present_rate = (((float)voltage / 1000.0) * ((float)batt_info.present_rate / 1000.0));
remaining = (((float)voltage / 1000.0) * ((float)remaining / 1000.0));
full_design = (((float)voltage / 1000.0) * ((float)full_design / 1000.0));
}
batt_info.percentage_remaining =
(((float)remaining / (float)full_design) * 100);
if (is_full)
batt_info.status = CS_FULL;
/*
* The envsys(4) ACPI routines do not appear to provide a 'time
* remaining' figure, so we must deduce it.
*/
batt_info.seconds_remaining = seconds_remaining_from_rate(batt_info.status, full_design, remaining, batt_info.present_rate);
#endif
bool colorful_output = false;
if (batt_info.status == CS_DISCHARGING && low_threshold > 0) {
if (batt_info.percentage_remaining >= 0 && strcasecmp(threshold_type, "percentage") == 0 && batt_info.percentage_remaining < low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
} else if (batt_info.seconds_remaining >= 0 && strcasecmp(threshold_type, "time") == 0 && batt_info.seconds_remaining < 60 * low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
}
}
#define EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT() \
do { \
if (outwalk == prevoutwalk) { \
if (outwalk > buffer && isspace(outwalk[-1])) \
outwalk--; \
else if (isspace(*(walk + 1))) \
walk++; \
} \
} while (0)
for (walk = format; *walk != '\0'; walk++) {
char *prevoutwalk = outwalk;
if (*walk != '%') {
*(outwalk++) = *walk;
continue;
}
if (BEGINS_WITH(walk + 1, "status")) {
const char *statusstr;
switch (batt_info.status) {
case CS_CHARGING:
statusstr = status_chr;
break;
case CS_DISCHARGING:
statusstr = status_bat;
break;
case CS_FULL:
statusstr = status_full;
break;
default:
statusstr = status_unk;
}
outwalk += sprintf(outwalk, "%s", statusstr);
walk += strlen("status");
} else if (BEGINS_WITH(walk + 1, "percentage")) {
if (integer_battery_capacity) {
outwalk += sprintf(outwalk, "%.00f%s", batt_info.percentage_remaining, pct_mark);
} else {
outwalk += sprintf(outwalk, "%.02f%s", batt_info.percentage_remaining, pct_mark);
}
walk += strlen("percentage");
} else if (BEGINS_WITH(walk + 1, "remaining")) {
if (batt_info.seconds_remaining >= 0) {
int seconds, hours, minutes;
hours = batt_info.seconds_remaining / 3600;
seconds = batt_info.seconds_remaining - (hours * 3600);
minutes = seconds / 60;
seconds -= (minutes * 60);
if (hide_seconds)
outwalk += sprintf(outwalk, "%02d:%02d",
max(hours, 0), max(minutes, 0));
else
outwalk += sprintf(outwalk, "%02d:%02d:%02d",
max(hours, 0), max(minutes, 0), max(seconds, 0));
}
walk += strlen("remaining");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
} else if (BEGINS_WITH(walk + 1, "emptytime")) {
if (batt_info.seconds_remaining >= 0) {
time_t empty_time = time(NULL) + batt_info.seconds_remaining;
struct tm *empty_tm = localtime(&empty_time);
if (hide_seconds)
outwalk += sprintf(outwalk, "%02d:%02d",
max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0));
else
outwalk += sprintf(outwalk, "%02d:%02d:%02d",
max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0));
}
walk += strlen("emptytime");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
} else if (BEGINS_WITH(walk + 1, "consumption")) {
if (batt_info.present_rate >= 0)
outwalk += sprintf(outwalk, "%1.2fW", batt_info.present_rate / 1e6);
walk += strlen("consumption");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
}
}
if (colorful_output)
END_COLOR;
OUTPUT_FULL_TEXT(buffer);
}
|